

Pergamon Tetrahedron Letters 42 (2001) 3783–3785

TETRAHEDRON LETTERS

Synthesis of KDO and analogues from a novel mannose-derived precursor

Govindaraj Kumaran and David R. Mootoo*

Department of Chemistry, *Hunter College*/*CUNY*, 695 *Park Avenue*, *New York*, *NY* 10021, *USA* Received 6 April 2001; accepted 12 April 2001

Abstract—The application of the readily available 1-thio-1,2-*O*-isopropylidene acetal (TIA) **6** (four steps from D-mannose) to the synthesis of analogues of KDO is illustrated by the preparation of KDO 1, 1-deoxy- β -KDO 2 and the β -C-KDO glycoside 3. © 2001 Elsevier Science Ltd. All rights reserved.

The incorporation of 3-deoxy-D-manno-octulosonic acid (KDO) **1** in the lipopolysaccharide (LPS) is a vital step in the assembly of the protective outer membrane of Gram-negative bacteria.¹ Since this mechanism is peculiar to these organisms, inhibitors of KDO metabolism are attractive as potential antibacterial agents.2 Investigations have been primarily directed at two enzymic targets: KDO8P synthase, which catalyses the reaction of arabinose-5-phosphate (A5P) and phosphoenol pyruvate (PEP) to KDO-8-phosphate (KDO8P), and CMP-KDO synthetase, which mediates the condensation of KDO8P and cytidine pyrophosphate to cytidine-5-monosphophate-KDO (CMP- KDO).² Accordingly the synthesis of analogues of intermediates associated with these processes have attracted attention (Fig. 1).³ Herein, we illustrate the versatility of a novel precursor for KDO analog synthesis, 1-thio-1,2-*O*-isopropylidene acetal (TIA) **6**. The chemistry is applied to the syntheses of KDO **1**, 2- $\text{decay-}\beta\text{-}\text{KDO}$ **2**,⁴ a potent inhibitor of CMP-KDO synthetase, and the novel, 'exact', β -C-glycoside 3.⁵ The strategy for *C*-glycoside **3** lays the groundwork for the synthesis of complex, hydrolytically stable inhibitors of CMP-KDO synthetase and the subsequent lipid A transferase.^{3h}

Our synthetic plan is based on the success of TIA's in oxocarbenium ion cyclizations.6 Thus **6** and the appropriate acid partner **7** may be converted to C1-substituted glycals **4** or **5**. Hydration or reduction of **4** and synthetic manipulation of the furan residue would provide KDO 1 or 2-deoxy-β-KDO 2. α-C-Alkylation on **5** would be a key step in the synthesis of **3** (Scheme 1).

TIA **6** was obtained in four straightforward steps from D-mannose. First, the known 1-*O*-acetate-1,2-*O*-isopropylidene **9**⁷ was prepared in 92% yield by the Suarez procedure on 2,3,5,6-di-*O*-isopropylidene-mannofuranose **8**. ⁸ Treatment of **9** under controlled conditions with thiophenol and BF_3 ·OEt₂, and hydrolysis of the product, then provided **6** in 45% yield from **9** (Scheme 2).

Conversion of **6** to enol ether **11** proceeded in 63% overall yield, and entailed DCC mediated esterification⁹ with 2-furoic acid, followed by Tebbe methylenation 10 of the ester **10**. The key oxocarbenium cyclization on **11** was promoted by methyl triflate in dichloromethane in

* Corresponding author. **Figure 1.** Biosynthesis of KDO α -glycosides.

⁰⁰⁴⁰⁻⁴⁰³⁹/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)00615-3

Scheme 1.

Scheme 2. (a) Iodosobenzene diacetate, I_2 , cyclohexane; (b) PhSH, CH_2Cl_2 , $BF_3 \cdot OEt_2$, $-40 \cdot C$; (c) NaOMe, MeOH.

the presence of 2,6-di-*tert*-butyl-4-methylpyridine. The desired glycal **4** was obtained in 92% yield (Scheme 3).

Methanolysis of **4**, followed by oxidative degradation of the furan, 11 proceeded smoothly providing a single ketal acid **12**. Hydrogenation of glycal **4**, followed by processing of the furan as before and methylation of the resulting acid, gave a single methyl ester **13**. The structures of **12** and **13** were confirmed by comparison with NMR data for the known compounds.5b,12 The preparation of **12** and **13** constitutes formal syntheses of KDO **1** and 2 -deoxy- β -KDO 2. It is known that acid hydrolysis of 12 leads to **1**, ¹² and base mediated isomerization of **13**, followed by acetal hydrolysis, has been shown to give **2**⁴ (Scheme 4).

Scheme 3. (a) 2-Furoic acid, DCC, DMAP, PhH; (b) Tebbe reagent, THF–toluene (3:1), pyridine, −78 to 0°C; (c) MeOTf, DTBMP, $CH₂Cl₂$, MS.

Alkylation of the enolate derived from methyl ester **13** with simple electrophiles is known to give predominantly β -*C*-glycosides of KDO.^{5b} The use of complex electrophiles in this reaction has not been reported. As a model study for the synthesis of β -*C*-glycosides containing more complex aglycone segments, we examined the reaction of glycal **5** with different nucleophiles. Thus, application of the two-step esterification-Tebbe protocol on TIA **6** and stearic acid provided the enol ether **14** in 82% yield from **6**. Methyl triflate-promoted cyclization of **14** afforded glycal **5** in 60% yield, together with 10% of the hydrated derivative. Attempts at alkylation of the oxocarbenium intermediate presumed to be generated in the cyclization reaction, or in the acid treatment of glycal **5**, led to low yields of alkylated product. The alkylation of the thioacetal **15** derived by addition of thiphenol to **5** was more successful. Treatment of **15** with propargyltrimethylsilane¹³ and $SnCl₄$ gave a single allenyl adduct **16** in 65% yield. The configuration of **16** was confirmed by observation of a NOE between one of the allenyl protons and the axial proton at C6 (KDO numbering). Ozonolysis of the allenyl residue in **16**, oxidation of the derived aldehyde, and acetal hydrolysis provided β -*C*-glycoside **3** (Scheme 5).

In summary, the easily accessible TIA **6** (35%, four steps from D-mannose) has been shown to be a versatile precursor for the synthesis of KDO and analogues. The syntheses of KDO 1 and 2-deoxy- β -KDO 2 proceeds through the central furanoglycal **4**, which may also be used as a precursor to 3-substituted analogues. The synthesis of *C*-glycoside **3** represents a potentially general strategy for the assembly of complex $KDO- β -c-glyco$ sides. These directions, as well as the evaluation of furanoglycal **4** and related glycals as KDO glycosyl donors, are being pursued.

Acknowledgements

We thank the National Institutes of Health (NIH), General Medical Sciences (GM 57865) for their support of this research. 'Research Centers in Minority Institutions' award RR-03037 from the National Center for Research Resources of the NIH, which supports the

Scheme 4. (a) H_2 , Pd/C, EtOAc; (b) RuO_2 , NaIO₄, CH₃CN; (c) $CH₂N₂$; (d) MeOH, CSA.

Scheme 5. (a) Stearic acid, DCC, DMAP, PhH; (b) Tebbe reagent, THF–toluene (3:1), pyridine, −78 to 0°C; (c) MeOTf, DTBMP, CH_2Cl_2 , MS; (d) PhSH, Ph₃P·HBr; (e) SnCl₄; propargylTMS, CH₂Cl₂; (f) O3 then Ph₃P; (g) NaClO₂; (h) 2N HCl–THF.

infrastructure (and instrumentation) of the Chemistry Department at Hunter, is also acknowledged.

References

- 1. Unger, F. M. *Adv*. *Carbohydr*. *Chem*. *Biochem*. **1981**, 38, 323–388.
- 2. For mechanistic studies on KDO biosynthesis, see: (a) Kaustov, L.; Kababya, S.; Du, S.; Baasov, T.; Gropper, S.; Shoham, Y.; Schmidt, A. *J*. *Am*. *Chem*. *Soc*. **2000**, 122, 2649–2650 and references cited therein. (b) Kohlbrenner, W. E.; Fesik, S. W. *J*. *Biol*. *Chem*. **1985**, 260, 14695–14699. (c) Raetz, C. R. H.; Purcell, S.; Meyer, M. V.; Qureshi, N.; Takayama, U. *J*. *Biol*. *Chem*. **1985**, 260, 16080–16088. (d) Ray, P. H.; Benedict, C. D.; Grasmuk, H. *J*. *Bacteriol*. **1981**, 145, 1273–1280. (e) Munson, R. S.; Rasmussen, N. S.; Osborn, M. J. *J*. *Biol*. *Chem*. **1978**, 253, 1503–1511.
- 3. (a) Du, S.; Faiger, H.; Belakhov, V.; Baasov, T. *Biorg*. *Med*. *Chem*. **1999**, ⁷, 2671; (b) Sheffer-Dee-Noor, S.; Belakhov, V.; Baasov, T. *Biorg*. *Med*. *Chem*. *Lett*. **1993**, 3, 1583–1588; (c) Coutrot, P.; Dumarcay, S.; Finance, C.; Tabyaoui, M.; Tabyaoui, B.; Grison, C. *Biorg*. *Med*. *Chem*. *Lett*. **1999**, 9, 949–952; (d) Tadanier, J.; Lee, C. M.; Whittern, D.; Wideburg, N. *Carbohydr*. *Res*. **1990**, 201, 185–208. Tadanier, J.; Lee, C. M.; Hengeveld, J.; Rosenbrook, Jr., W.; Whittern, D.; Wideburg, N. *Carbohydr*. *Res*. **1990**, 201, 209–222; (e) Claesson, A.; Luthman, K.; Gustafsson, K.; Bondesson, G. *Biochem*. *Biophys*. *Res*. *Commun*. **1987**, 143, 1063–1068; (f) Hammond, S. M.; Claesson, A.; Jansson, A. M.; Larsson, L.-G.; Pring, B. G.; Town, C. M.; Ekström, B. Nature 1987, 327, 730–732; (g) Goldman, R.; Kohlbrenner, W.; Lartey, P.; Pernet, A. *Nature* **1987**, 329, 162–164; (h) Norbeck, D. W.; Kramer, J. B.; Lartey, P. A. *J*. *Org*. *Chem*. **1987**, 52, 2174–2179; (i) Molin, H.; Pring, B. G. *Tetrahedron Lett*. **1985**, 26, 677–680.
- 4. (a) For recent syntheses of **1** and **2** and a listing of earlier approaches: Burke, S. D.; Sametz, G. M. *Org*. *Lett*. **1999**, 1, 71–74. Syntheses of KDO not mentioned in (a), (b) Reiner, M.; Schmidt, R. R. *Tetrahedron*: *Asymmetry* **2000**, 11, 319–335. (c) Miynarski, J.; Banaszek, A. *Org*. Lett. **2000**, 2, 1709–1711. (d) Bräuer, N.; Kirschning, A.; Schaumann, E. *Eur*. *J*. *Org*. *Chem*. **1998**, 2729–2732. (e) Mikshiev, Y. M.; Paidak, B. B.; Kornilev, V. I.; Zhdanov, Y. A. *Russ*. *J*. *Gen*. *Chem*. **1998**, 68, 1168–1169.
- 5. 'Exact' *C*-glycosides refers to *O*-glycoside analogues in which the only modification is the replacement of the anomeric oxygen atom by a methylene group. For simple, 'exact' KDO *C*-glycosides: (a) Luthman, K.; Orbe, M.; Wa¨glund, T.; Claesson, A. *J*. *Org*. *Chem*. **1987**, 52, 3777–3784. (b) Wäglund, T.; Claesson, A. Acta Chem. *Scand*. **1992**, 46, 73–76 and Refs. 3b,3h. For a KDO-*C*disaccharide with a hydroxymethyl linker, see: (c) Koketsu, M.; Kuberan, B.; Linhardt, R. J. *Org*. *Lett*. **2000**, ², 361–3363.
- 6. (a) Cheng, X.; Khan, N.; Mootoo, D. R. *J*. *Org*. *Chem*. **2000**, 65, 2544–2547; (b) Khan, N.; Cheng, X.; Mootoo, D. R. *J*. *Am*. *Chem*. *Soc*. **1999**, 121, 4918–4919.
- 7. De Armas, P.; Francisco, C. G.; Suarez, E. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1992**, 31, 772–774.
- 8. Schmidt, O. *Methods in Carbohydrate Chemistry*; Academic Press: London, 1963; Vol. II, pp. 319–325.
- 9. Neises, B.; Steglich, W. *Angew*. *Chem*., *Int*. *Ed*. *Engl*. **1978**, 17, 522–523.
- 10. Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego, C. H.; Tijerina, T.; Pine, R. D. *J*. *Org*. *Chem*. **1985**, 50, 1212–1218.
- 11. Danishefsky, S. J.; Pearson, W. H.; Segmuller, B. E. *J*. *Am*. *Chem*. *Soc*. **1985**, 107, 1280–1285.
- 12. Dondoni, A.; Fantin, G.; Fogagnolo, M.; Merino, P. *Tetrahedron Lett*. **1990**, 31, 4513–4516.
- 13. Bertozzi, C. R.; Bednarski, M. D. *Tetrahedron Lett*. **1992**, 33, 3109–3112.